Dedicated Servo Recording System and Performance Evaluation

Dedicated Servo Recording System and Performance Evaluation
Title:
Dedicated Servo Recording System and Performance Evaluation
Other Titles:
Magnetics, IEEE Transactions on
Keywords:
Publication Date:
16 May 2015
Citation:
Zhi-Min Yuan; Jianzhong Shi; Chun Lian Ong; Alexopoulos, P.S.; Chunling Du; Anmin Kong; Shiming Ang; Santoso, B.; Siang Huei Leong; Kheong Sann Chan; Yibin Ng; Kui Cai; Tsai, J.; Hanxiang Ng; Hang Khume Tan, "Dedicated Servo Recording System and Performance Evaluation," in Magnetics, IEEE Transactions on , vol.51, no.4, pp.1-7, April 2015 doi: 10.1109/TMAG.2014.2354379
Abstract:
The perpendicular magnetic recording (PMR) in hard disk drives is approaching its physical limitation. The emerging technologies, such as heat assisted magnetic recording and microwave assisted magnetic recording have been proposed to record on magnetic media with thermally stable smaller size grains at higher areal density (AD). However, in the media fabrication, achieving well-isolated small size of grains is more challenging than obtaining high Ku material as recording media. Reducing the number of grains per bit is a major path for keeping AD growth of PMR in recent years. To minimize the SNR penalty at a smaller grain number per bit, pushing more on track density is the right approach. With the 2-D magnetic recording (TDMR) readers for inter-track interference cancellation, the off-track read capability is improved significantly for allowing a narrower track read. In the drive working environment, when the external vibration or other mechanical disturbance happens during the writing process, it creates more track squeeze at adjacent tracks and leaves a very narrow track at some locations of the track. When the track width is narrower than the squeeze to death width in the 747 curve, it causes hard failure in the channel. To solve the track squeeze problem, this paper proposes to add an additional magnetic recording layer in between the data recording layer and the soft underlayer of conventional PMR media. This additional recording layer is used to record servo information only. The continuous positioning error signal is able to improve the servo performance and to provide the real-time monitoring of the positioning error. When it is under bad servo conditions, the writing process can be stopped to avoid nontolerable track squeeze. The continuous servo signals are designed to be of moderate intensity at very low frequency, and its impact on data signal has been minimized. The linear density gap between the dedicated servo media and the conventional - MR media is able to be controlled within 3%. As the dedicated servo system keeps only around 100 wedges of track ID and sector ID at the data layer, the surface area saving at the data layer can break even in capacity. The dedicated servo technology together with TDMR readers is the key technology to achieve ultrahigh track density during both writing and reading processes.
License type:
PublisherCopyrights
Funding Info:
Description:
(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
ISSN:
0018-9464
Files uploaded:

File Size Format Action
2694.pdf 638.72 KB PDF Open