Strain Engineering of Octahedral Rotations and Physical Properties of SrRuO3 Films

Page view(s)
6
Checked on Nov 10, 2022
Strain Engineering of Octahedral Rotations and Physical Properties of SrRuO3 Films
Title:
Strain Engineering of Octahedral Rotations and Physical Properties of SrRuO3 Films
Other Titles:
Scientific Reports
Keywords:
Publication Date:
28 May 2015
Citation:
Abstract:
Strain engineering is an effective way to modify functional properties of thin films. Recently, the importance of octahedral rotations in pervoskite films has been recognized in discovering and designing new functional phases. Octahedral behavior of SrRuO3 film as a popular electrode in heterostructured devices is of particular interest for its probable interfacial coupling of octahedra with the functional overlayers. Here we report the strain engineering of octahedral rotations and physical properties that has been achieved in SrRuO3 films in response to the substrate-induced misfit strains of almost the same amplitude but of opposite signs. It shows that the compressively strained film on NdGaO3 substrate displays a rotation pattern of a tetragonal phase whilst the tensilely strained film on KTaO3 substrate has the rotation pattern of the bulk orthorhombic SrRuO3 phase. In addition, the compressively strained film displays a perpendicular magnetic anisotropy while the tensilely strained film has the magnetic easy axis lying in the film plane. The results show the prospect of strain engineered octahedral architecture in producing desired property and novel functionality in the class of perovskite material.
License type:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Funding Info:
Description:
ISSN:
2045-2322
Files uploaded:

File Size Format Action
fy14-2912.pdf 2.14 MB PDF Open