ERNN: A biologically inspired feed-forward neural network to discriminate emotion from EEG signal

ERNN: A biologically inspired feed-forward neural network to discriminate emotion from EEG signal
Title:
ERNN: A biologically inspired feed-forward neural network to discriminate emotion from EEG signal
Other Titles:
IEEE Transactions on Neural Networks and Learning Systems
Publication Date:
01 March 2014
Citation:
Khosrowabadi, R., Chai, Q., Ang, K. K., & Wahab, A. (2014). ERNN: A biologically inspired feed-forward neural network to discriminate emotion from EEG signal. IEEE Trans. Neural Netw. Learn. Syst., 25(3), 609-620.
Abstract:
Emotions play an important role in human cognition, perception, decision making, and interaction. This paper presents a six-layer biologically inspired feedforward neural network to discriminate human emotions from EEG. The neural network comprises a shift register memory after spectral filtering for the input layer, and the estimation of coherence between each pair of input signals for the hidden layer. EEG data are collected from 57 healthy participants from eight locations while subjected to audio-visual stimuli. Discrimination of emotions from EEG is investigated based on valence and arousal levels. The accuracy of the proposed neural network is compared with various feature extraction methods and feedforward learning algorithms. The results showed that the highest accuracy is achieved when using the proposed neural network with a type of radial basis function.
License type:
PublisherCopyrights
Funding Info:
Description:
ISSN:
2162-237X
Files uploaded: