In this paper, we present an efficient architecture for the implementation of a delayed least mean square adaptive filter. For achieving lower adaptation-delay and area-delay-power efficient implementation, we use a novel partial product generator and propose a strategy for optimized balanced pipelining across the time-consuming combinational blocks of the structure. From synthesis results, we find that the proposed design offers nearly 17% less area-delay product (ADP) and nearly 14% less energy-delay product (EDP) than the best of the existing systolic structures, on average, for filter lengths N = 8, 16, and 32. We propose an efficient fixed-point implementation scheme of the proposed architecture, and derive the expression for steady-state error. We show that the steady-state mean squared error obtained from the analytical result matches with the simulation result. Moreover, we have proposed a bit-level pruning of the proposed architecture, which provides nearly 20% saving in ADP and 9% saving in EDP over the proposed structure before pruning without noticeable degradation of steady-state-error performance.