Lim, C.S. et al. Hybrid metamaterial design and fabrication for terahertz resonance response enhancement. Optic Express 18, 12421–12429 (2010).
Abstract:
Planar hybrid metamaterial with different split ring resonators (SRR) structure dimensions are fabricated on silicon substrates by femtosecond (fs) laser micro-lens array (MLA) lithography and lift-off process. The fabricated metamaterial structures consist of: (a) uniform metamaterial with 4 SRRs at same design and dimension as a unit cell and (b) hybrid metamaterial with 4 SRRs at same design but different dimensions as a unit cell. The electromagnetic field responses of these hybrid and single dimension metamaterial structures are characterized using a terahertz (THz) time-domain spectroscopy. Transmission spectra of these metamaterial show that a broader resonance peak is formed when 2 SRRs are close to each other. FDTD simulation proves that there is a strong mutual coupling between 2 SRRs besides a strong localized electric field at the split gap, which can enhance the electric field up to 364 times for tunable, broad band and high sensitivity THz sensing. Meanwhile, the strong coupling effect could lead to the formation of an additional resonance peak at ~0.2 THz in the THz spectra regime.