Adaptive Coordinated Napping (CoNap) for Energy Saving in Wireless Networks

Koichi Adachi, Jingon Joung, Sumei Sun, and Peng Hui Tan

Abstract—We propose a time slot based transmission strategy, referred to as adaptive coordinated napping (CoNap), for energy saving in cellular networks under time-varying traffic demand. In adaptive CoNap network, multiple neighboring base stations (BSs) form a cluster and each BS operates in either a transmit mode (TM) or a nap mode (NM) in each time slot. The dynamic assignment of TM and NM to each BS is implicitly coordinated among multiple BSs. This implicit coordination is realized by a binary general flickering pattern matrix (FPM) through adaptively selected mapping matrix (MM). To track the time-varying traffic demand, we develop an adaptive algorithm to dynamically select the appropriate MM from a predefined MM set by taking into account the network quality of service (QoS) requirement. Our numerical results based on a realistic energy consumption model in a cellular network show that as high as 40% saving can be achieved without compromising the network QoS.

Index Terms—Cellular networks, coordinated base station napping, dynamic base station switching, energy saving, green communications, resource scheduling, sleeping strategy.

I. INTRODUCTION

E NERGY efficiency (EE) has become important performance metric of cellular communication systems due to the high demand for energy saving [1]. The optimization objective in the communication system design has been shifted from high spectrum efficiency (SE) to high EE [1]–[3], and a good tradeoff between SE and EE [4].

The traffic demand of cellular systems has a dynamic nature in both time and space [5]. Under a high traffic demand condition, most of the radio resources such as time slots, frequency bands, and multiple antennas are utilized with a high probability. On the other hand, under a low traffic demand condition, only part of the resources is necessary to satisfy the traffic demand. Thus, there is a large potential for energy saving. The base station (BS) is a major power consumer of the whole network [6], hence network energy saving can be effectively achieved by reducing BS’s power consumption. This observation leads us to consider a BS deactivation method.

A. Related Works

The BS activation and deactivation can be adapted either in a long time period (e.g., hour-scale) which is called a long duration approach (LDA) [7]–[13], or in a short time period (e.g., millisecond-scale) which is called a short duration approach (SDA) [14]–[16] as shown in Table I.

1) Long Duration Approach (LDA): In LDA, a BS is deactivated (or switched to a sleep mode) for a long period of time. The coverage area of the deactivated BS is called dormant coverage area. The users within the dormant coverage area are serviced by nearby active BSs to guarantee their quality-of-service (QoS) requirement. Hence, two main issues need to be addressed: how we select appropriate BSs to be deactivated and when we deactivate/activate BSs.

In [8], the traffic load1 is used as a metric to select the BS to be deactivated. The less the traffic load is, the less the BS is utilized. The underutilized BS is deactivated by handing over its traffic to the neighboring BSs. Both centralized/decentralized algorithms are proposed for the selection [8]. Once BS is deactivated, the neighboring active BSs need to support the dormant coverage area. To guarantee QoS requirement, a cell zooming method [8] and a coordinated multipoint (CoMP) method [10] have been mainly considered. In cell zooming, active BSs expand their coverage. In CoMP, the dormant coverage area is covered by multiple active BSs via coordinated beamforming [17], [18]. A simple power control (PC) algorithm combined with cell zooming/CoMP is proposed to increase the EE in [12]. In [13], the distance information between the BS and users is used to select the BSs to be deactivated. The BS with the longest average distance to users is deactivated. In cell zooming, the active BS expands its coverage by either increasing transmit power or optimizing vertical antenna tilt angle in order to support the dormant coverage area. If the former approach is adopted, the power amplifier (PA) needs to be carefully designed as the PA efficiency (PAE) is dependent on the output power [19]. Generally, a PA is designed so that the maximum PAE is obtainable at the maximum output power. To increase the transmit power during cell zooming period, the PA characteristic should be matched to that period2. This results in poor PAE during non-cell zooming period. If antenna tilt angle adaptation is used, the change of antenna tilt angle

1In this paper, we explicitly differentiate two terminologies: traffic demand (or simply traffic) and traffic load. Traffic demand indicates the amount of traffic arriving into the system, e.g., the number of users. The traffic load indicates the actual resource utilization. The traffic load is calculated as a ratio of the system resource (time, frequency etc) currently occupied to the available total system resource.

2Power amplifier switching (PAS) configuration may be a solution [20].
may introduce large inter-cell interference (ICI) to neighboring coverage area supported by other active BSs. Channel state information (CSI) and user data exchanges are essential for CoMP, hence high capacity backhaul link is required [21]. In addition, the complex optimization for beamforming is necessary [10].

In [22], the potential energy saving gain obtained by optimizing the BS density according to the user density is shown. The time-varying nature of the traffic demand is used to decide when to deactivate and reactivate the BSs [7], [9]. For simplicity, let us consider the homogeneous network condition, i.e., the traffic demand at each BS is equal. The traffic at instance \(t \) normalized by its peak value is denoted by \(0 \leq f(t) \leq 1 \), which is modeled as a sinusoidal wave. Suppose a fraction \(x < 1 \) of BSs within the system remain active, while the remaining \((1-x) \) BSs are deactivated if the following is satisfied [7], [9]:

\[
f(t) \cdot \left(1 + \frac{1-x}{x}\right) = \frac{1}{x} f(t) < f_{th},
\]

where \(f_{th} \) is a predetermined threshold. To balance the QoS degradation and energy saving, \(f_{th} \) needs to be carefully set [9]. The deactivated BS is to be reactivated when the approximated traffic becomes \(f(t) > x f_{th} \) [7] or \(f(t) > f_{th} \) [9]. In (1), it is assumed that the same amount of traffic \(\frac{1-x}{x} f(t) \) is handed over to each remaining active BS. For a given traffic demand, however, the actual traffic load may vary significantly due to the surrounding environment such as channel condition. The assumption made in (1) does not take into account this important issue.

The existing LDAs have several drawbacks: i) insufficient adaptation to the dynamic nature of traffic demand due to the long operation cycle, ii) a number of parameter optimizations such as antenna tilt angle and traffic demand threshold value, iii) huge overhead and complex operation for cooperation among BSs, and iv) reduced PAE due to the increase of transmit power during cell zooming period.

2) Short Duration Approach (SDA): The PA is major power consumer in BS [23]. When traffic load is zero, it is possible to put PA into micro sleep mode which requires significantly low power [2]. In [2], a simple on-off scheduler is proposed to increase EE. The scheduler works to let the subframes empty as often as possible to facilitate micro sleep. In [14], cell discontinuous transmission (DTX) is proposed to reduce power consumption of 3rd generation partnership project (3GPP) long-term evolution (LTE) system. Cell DTX makes use of multicast and broadcast single frequency network (MBSFN) subframe if traffic demand is low. In 3GPP LTE, time domain inter-cell interference coordination (ICIC) is introduced for heterogeneous network (HetNet) to reduce the interference from macro BS to users in a small cell by muting certain subframes [24]. This interference reduction can contribute to the power saving. However, the configuration of MBSFN subframes in cell DTX is performed by each BS, i.e., no coordination among BSs. Thus, cell DTX does not fully facilitate the interference reduction, which can be obtained by coordination among BSs.

In [15], it is shown that the coordination of sleep mode among neighboring BSs can bring EE improvement due to the ICI reduction under fixed traffic demand condition. Although coordination is considered in [15], the number of coordinated BSs is restricted to three and no adaptive selection of coordinated sleep pattern is considered. Furthermore, the time-varying traffic demand is not considered. In [16], a traffic demand-aware PC combined with BS sleep is proposed to maximize EE. The authors propose two strategies to determine when to activate the deactivated BS. The number of awaiting users in the queue and predetermined vacation duration are used as the criteria. To the best of authors’ knowledge, no literature has considered adaptive coordination among multiple BSs under time-varying traffic demand for SDA.

B. Proposed Approach and Contributions

To address the time-varying dynamic traffic demand and solve the problem of existing BS deactivation approaches, we propose a time slot based transmission strategy which is termed by adaptive coordinated napping (CoNap). Adaptive CoNap belongs to SDA. The napping is equivalent to the subframe-based sleeping in [15], yet it represents well the behavior of BS which transmits after very short non-transmission time (e.g., 1ms for subframe of LTE system). In adaptive CoNap networks, multiple neighboring BSs form a cluster. Each BS in a cluster operates in either a transmit mode (TM) or a nap mode (NM) at each time slot. In TM, a BS is allowed to transmit the signals to its associated users by allocating frequency domain RBs, and the actual transmission is determined by a resource allocation algorithm. The BS may not transmit any signal to users even during TM time slot. In this case, transmission overhead arises partially as the time slot is declared TM time slot. In NM, a BS is predetermined not to transmit any signal, and stands by for the quick transition to TM. The neighboring BSs in NM do not generate interference, hence the overall network interference is reduced. The operation of each BS is represented by a binary vector with a value of “1” for TM and “0” for NM, which is called flickering pattern. The flickering patterns for BSs in a cluster can be represented by a general flickering pattern matrix (FPM) and a mapping matrix (MM).

The proposed adaptive CoNap supports arbitrary number of coordinated BSs and flexible flickering pattern assignment by the use of the general FPM and the MM. In this paper, we consider two types of QoS: user QoS, i.e., target rate, and network QoS which is the probability that users have their QoS requirement satisfied. We need to dynamically select the flickering pattern to achieve energy saving without compromising the user and network QoSs under time-varying traffic demand. This is realized by selecting the appropriate MM from the set of available MMs based on the current traffic load. This enables the energy efficient multi-cell (BS) coordination. As a result, the number of users whose QoS (target rate) can not be satisfied is kept below a certain number, while achieving energy saving.

Our proposed adaptive CoNap has the following advantages over the existing LDAs and SDA: i) fine tracking ability of the dynamic traffic demand, ii) no complicated cooperation among BSs, but still implicit coordination, iii) no transmit power increase nor antenna tilt angle adaptation, iv) no coverage expansion for BSs, v) no additional control signaling between BS and users.
TABLE I
RELATIONSHIP BETWEEN PREVIOUS WORKS AND THIS WORK

<table>
<thead>
<tr>
<th>Long duration approach (LDA)</th>
<th>Short duration approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Traffic Demand</td>
<td>w/o coordination</td>
</tr>
<tr>
<td>Dynamic traffic</td>
<td>w/ coordination</td>
</tr>
<tr>
<td>w/o coordination</td>
<td>w/o coordination</td>
</tr>
<tr>
<td>Dynamic BS switching [9]</td>
<td>Intercell cooperation w/ PC [12]</td>
</tr>
<tr>
<td>Coordinated sleep schedule</td>
<td>Distance-aware BS sleeping [13]</td>
</tr>
<tr>
<td>Load-aware PC with BS sleep [16]</td>
<td>Load-aware PC with BS sleep [16]</td>
</tr>
<tr>
<td>BS sleeping w/ CoMP [10]</td>
<td>Adaptive CoNap</td>
</tr>
</tbody>
</table>

Fig. 2. An example of BS flickering over three time slots. ‘+’ and ‘⋆’ represent transmit mode (TM) and nap mode (NM), respectively.

A. Binary General Flickering Pattern Matrix (FPM) and Mapping Matrix (MM)

A binary general FPM is a Q-by-S binary matrix and denoted by $F_G = (f_1^T \cdot f_2^T \cdot \cdots f_q^T)$ where $(.)^T$ denotes the transpose operation. F_G captures the operation of BSs during flickering pattern cycle S. Since the element of general FPM F_G is binary (either “1” or “0”), the largest value of Q is 2^S. $f_q = (f_{q,1} \cdots f_{q,s} \cdots f_{q,S}), q \in \{1, \cdots, Q\}$, which is the qth row of F_G, is the qth flickering pattern of length S. The element $f_{q,s} \in \{1, 0\}$ denotes the BS operation mode at time slot s; if $f_{q,s} = 1$, the BS is in TM, and otherwise, it is in NM. Note that F_G is not an orthogonal matrix, and for each f_q, only a subset of the Q vectors are orthogonal to it.

Let us denote the FPM for the cluster as $J = (j_1^T \cdots j_S^T \cdots j_B^T)^T$ where j_b is a length S binary row vector representing the flickering pattern assigned to BS $b \in B$. A B-by-Q binary MM $M_m \in M$, where M is the set of available MMs, is defined as

$$M_m = (e_{1_s(m)}^T \cdots e_{i_s(m)}^T \cdots e_{B_s(m)}^T)^T,$$

where $e_{i_s(m)}$ is a length Q row vector with its ith element being “1” and the rest elements being “0”. Hence when the
The flickering pattern $f_{i_u(m)}$ is assigned to BS b. An MM, M_m, is selected from the set of MMs $M_m \in \mathcal{M}$ to realize a certain flickering pattern in a cluster.

B. Received SINR at Users

Let us suppose the system is operating with MM $M_m \in \mathcal{M}$ during transmission cycle t. The average received SINR at user $u \in \mathcal{U}$ from BS b during time slot s in transmission cycle t is calculated as

$$\gamma_{u,b}(t,m,s) = \frac{f_{i_u(m),s}P_{TX}\Gamma_{u,b}(t)}{I_{u,b}(t,m,s) + \sigma_n^2},$$

where $f_{i_u(m),s} \in \{1,0\}$ indicates that BS b is in TM if $f_{i_u(m),s} = 1$ and in NM if $f_{i_u(m),s} = 0$, P_{TX} is the transmit power per unit bandwidth, $\Gamma_{u,b}(t)$ is the channel gain between user u and BS b which is assumed to be constant during one cycle, $I_{u,b}(t,m,s)$ is the interference from neighboring BSs, and σ_n^2 is the additive white Gaussian noise (AWGN) power.

In the following, we omit the transmission cycle index t unless otherwise required.

In this paper, only the large scale fading effects, i.e., distance dependent path-loss and shadowing-loss, are considered. The channel gain, $\Gamma_{u,b}$, is given by

$$\Gamma_{u,b} = 10^{\frac{A(\psi_{u,b}) + L_{u,b} + n_{u,b}}{10}},$$

where $A(\psi_{u,b})$ is the antenna gain with $\psi_{u,b}$ being the elevation angle of user u from the main-beam direction of the antenna of BS b, $L_{u,b}$ is the distance dependent path-loss, and $n_{u,b}$ is the log-normally distributed shadowing-loss between user u and BS b with the standard deviation of σ (dB).

The interference $I_{u,b}(m,s)$ is defined as

$$I_{u,b}(m,s) \triangleq P_{TX}\sum_{b' \in (\mathcal{B}_{\text{total}} \setminus b)} f_{i_{u,b'}(m)}\Gamma_{u,b'}.$$

C. Frequency Domain RB Allocation and Traffic Load of Each BS

We consider the target rate as a user QoS requirement. Since there is no explicit cooperation among BSs, the RB allocation information at each BS is not shared among the BSs. Hence, each BS allocates sufficient number of RBs to its users to achieve the target rate under the assumption of the largest interference. In other word, the BS may over allocate the RBs to its users.

We define the target rate of user u as $R_{\text{tar}}^u \triangleq \frac{V_u}{\tau_{\text{trans}}}$, where V_u denotes the number of bits need to be delivered during one transmission cycle. Let $n_{u,b}(m,s) \in \{0,1, \cdots , N\}$ indicate the number of RBs at BS b allocated to user u during time slot s. To successfully deliver V_u bits during one transmission cycle, we need to satisfy

$$t_{\text{cycle}}R_{\text{tar}}^u \leq t_s \sum_{b \in \mathcal{B}} \sum_{s=1}^{S} n_{u,b}(m,s)R_{u,b}(m,s) \quad \text{(bits)}. \quad (7)$$

Accordingly, we obtain

$$R_{u,b}(m,s) \leq \frac{1}{S} \sum_{b \in \mathcal{B}} \sum_{s=1}^{S} n_{u,b}(m,s)R_{u,b}(m,s) \quad \text{(bps)}, \quad (8)$$

where $R_{u,b}(m,s)$ is the achievable rate of user u per RB by connecting to BS b during time slot s, which is calculated as

$$R_{u,b}(m,s) = W_{RB}\log_2(1 + \gamma_{u,b}(m,s)) \quad \text{(bps)}. \quad (9)$$

Due to the limited number of RBs, some of the users may not have (8) satisfied. Those users are considered to be blocked. The blocking rate of the system during one transmission period with M_m is defined as $P_{\text{blk}}(m) \triangleq \frac{|\mathcal{U}_{\text{blk}}(m)|}{|\mathcal{U}|}$, and $\mathcal{U}_{\text{blk}}(m)$ is the set of blocked users.

The traffic load $\rho_b(m,s)$ is defined as the fraction of the RBs occupied during time slot s, which is calculated as

$$\rho_b(m,s) = \frac{1}{|\mathcal{U}|} \sum_{w \in \mathcal{U}} n_{u,b}(m,s). \quad (10)$$

D. BS Energy Consumption Model

About 50 – 80% of power at BS is consumed at PA [23]. Thus, the overall power consumption depends on PAE. The typical PAE is assumed to be around 38% [2], however it depends on the output transmit power [19]. The transmit power depends on the traffic load. We therefore adopt a practical power consumption model to capture the contribution of both traffic load and imperfect PAE. Doherty PAs provide a high PAE and are widely employed in BSs [2], hence we focus on Doherty PA in this paper.

The radio frequency (RF) transmit power is expressed as a function of $\rho_b(m,s)$ as [2]

$$P_{\text{RF}}(\rho_b(m,s)) = \left(\frac{P_{\text{max}} - P_{\text{OH}}}{\rho_b(m,s)} + P_{\text{OH}}\kappa(f_{i_u(m),s},\rho_b(m,s))\right)W_{\text{total}}P_{\text{TX}}. \quad (11)$$

where P_{max} is the maximum transmit power and $P_{\text{OH}} = \rho_b P_{\text{max}} (0 \leq \rho_b < 1)$ is the fixed overhead of the radiated power related to essential signals for the system, e.g., a reference signal and a control signal, and

$$\kappa(x,y) = \begin{cases} 0 & x = 0, \\ 0.5 & x = 1 \text{ and } y = 0, \\ 1 & x = 1 \text{ and } y \neq 0. \end{cases} \quad (12a)$$

(12a) is for NM. Since BS is in NM, no overhead is necessary. (12b) represents the situation when BS is in TM but no user is associated. Since the BS is in TM, overhead should be generated partially. (12c) is for the situation when BS is in TM and there are users associated with it.
The PAE is defined as the ratio of output RF power to required DC power. The Doherty PAE is expressed as [19] (The derivation is given in Appendix)

\[
\eta(P_{\text{RF}}(\rho_b(m, s))) = \begin{cases}
\frac{\pi}{2} \sqrt{c P_{\text{RF}}(\rho_b(m, s))} & \text{for } 0 < c P_{\text{RF}}(\rho_b(m, s)) \leq \frac{1}{4}, \\
\frac{\pi}{2} c P_{\text{RF}}(\rho_b(m, s)) & \text{for } \frac{1}{4} < c P_{\text{RF}}(\rho_b(m, s)) \leq 1,
\end{cases}
\]

(13a)

where \(c = (\xi P_{\text{max}})^{-1} \) with \(\xi \) being the PA output backoff (OBO). The OBO is determined by the peak-to-average power ratio (PAPR) in order to avoid the nonlinear region of PA.

By denoting the amplification gain of the PA by \(g \), the input signal power to PA is given by \(P_{\text{in}}(\rho_b(m, s)) = P_{\text{RF}}(\rho_b(m, s))/g \). Then, the total power consumed at PA for output power of \(P_{\text{RF}}(\rho_b(m, s)) \) is expressed as

\[
P_{\text{PA}}(\rho_b(m, s)) = \left(\frac{1}{g} + \frac{1}{\eta(P_{\text{RF}}(\rho_b(m, s)))} \right) P_{\text{RF}}(\rho_b(m, s)),
\]

and the BS power consumption for given traffic load \(\rho_b(m, s) \) is

\[
P(\rho_b(m, s)) = (P_{\text{fix}} + (\rho_b(m, s) P_{\text{dyn}} + P_{\text{PA}}(\rho_b(m, s))) P_{\text{loss}},
\]

(14)

where \(P_{\text{fix}} \) and \(P_{\text{dyn}} \) denote the power consumption at small-signal RF transmitter excluding the PA and base band interface, respectively, and \(P_{\text{loss}} \) is the total power loss incurred by an AC-DC unit for connection to electrical power grid, a DC-DC power supply for providing stable DC power to each unit, and an active cooling system [25]. The power consumption during NM is given as

\[
P_{\text{NM}} = P_{\text{loss}} P_{\text{fix}}.
\]

(16)

Eventually, the total energy consumption of a cluster during one cycle with MM \(M_m \) is given as

\[
E_c(m) = t_{\text{blk}} \sum_{b \in B} \sum_{s=1}^{S} P(\rho_b(m, s)).
\]

(17)

III. RB ALLOCATION

In this section, we propose a network energy saving RB allocation for the CoNap network.

A. Frequency Domain RB Allocation

To minimize the total energy consumption per cluster, the optimization problem for a given MM \(M_m \) is formulated as

\[
\min_{n_u,b(m, s)} E_c(m)
\]

(18a)

s.t. \(\frac{1}{S} \sum_{s=1}^{S} \sum_{b \in B} n_{u,b}(m, s) R_{u,b}(m, s) \geq R_{u,\text{tar}}, \quad \forall u, \)

(18b)

\[
\sum_{u \in U} n_{u,b}(m, s) \leq N_b, \quad \forall b, s,
\]

(18c)

\[
\sum_{b \in B} \nu \left(\sum_{s=1}^{S} n_{u,b}(m, s) \right) \leq 1, \quad \forall u.
\]

(18d)

The function \(\nu(x) \) is defined as

\[
\nu(x) = \begin{cases}
0 & \text{if } x = 0, \\
1 & \text{if } x > 0.
\end{cases}
\]

(19)

Constraint (18b) guarantees each user’s target rate in each transmission cycle, (18c) guarantees that the number of allocated RBs during each time slot at each BS is no larger than the total number of RBs, and (18d) follows the fact that each user is associated with at most one BS at a time.

Problem (18) is a combinatorial problem with the complexity \(O(B^{2d}) \), we develop a suboptimum algorithm to solve it. Note that any resource allocation algorithm can be incorporated into the proposed adaptive CoNap network. To this end, the following observation can be used. While satisfying (18b), \(n_{u,b}(m, s) \) is minimized by connecting user \(u \) to the BS with the highest \(\gamma_{u,b}(m, s) \) as it is a decreasing function over \(\gamma_{u,b}(m, s) \). Then, the following suboptimum algorithm is developed to solve the optimization problem (18).

- Step 1: Associate each user with the BS which has the highest received SINR, i.e., \(b_u^* = \arg \max_{b \in B} \gamma_{u,b}(m, s) \). The set of users associated with BS \(b \) is denoted by \(U_b \). The total rate of each user is initialized to \(R_u = 0 \) for \(u \in U_b \). Repeat step 2 - 4 for all the TM time slots.
- Step 2: Initialize the number of remaining RBs of BS \(b \) at time slot \(s \) as \(N_b(s) = N \).
- Step 3: Select user \(u^* = \arg \max_{u \in U_b} \gamma_{u,b}(m, s) \) and calculate the required number of RBs as

\[
n_{u^*,b}(m, s) = \left[\frac{(R_{u^*,\text{tar}} - R_u)}{R_{u^*,b}(m, s)} \right],
\]

(20)

where \([x] \) denotes the smallest integer greater than or equal to \(x \).

- Step 4: If \(n_{u^*,b}(m, s) \leq N_b(s) \), allocate \(n_{u^*,b}(m, s) \) RBs to user \(u^* \) and decrease \(N_b(s) \) by \(n_{u^*,b}(m, s) \). Update the user set as \(U_b = (U_b \setminus u^*) \) and go back to Step 3. Otherwise, allocate \(N_b(s) \) RBs to user \(u^* \), update the total rate as \(R_{u^*,b} = R_{u^*,b} + N_b(s) R_{u^*,b}(m, s)/S \) and set \(N_b(s) = 0 \). Move to the next allocated time slot and go back to step 2.
- Step 5: If \(R_u < R_{u^*,\text{tar}} \), consider user \(u \) as blocked, i.e., \(U_b \setminus (U_b \setminus u) \).

B. Flickering Pattern Mapping Matrix (FPMM)

1) General-Flickering Pattern Mapping Matrix (G-FPMM): We consider general-flickering pattern mapping matrix (G-FPMM). For G-FPMM, consecutive time slots are allocated to each BS in order to reduce the energy consumption of user [27]. The G-FPMM is a compromised solution between the ICI reduction and the number of available time slots for each BS.

G-FPMM allocates \(m \) consecutive TM time slots to each BS, hence the flickering patterns of BSs may not be orthogonal to each other. Since the total number of time slots in one transmission cycle is limited to \(S \), consecutive time slots may only be allocated to some BSs in consecutive transmission cycles. Then, the position of the \(s \)th TM time slot for BS \(b \)
is uniquely expressed as \((b + s - 1) - \left\lceil \frac{b + s - 1}{S + 1} \right\rceil S\). Thus, the following G-FPMM is obtained:

\[
M_m = (e_{i_1(m)}^T \cdots e_{i_k(m)}^T \cdots e_{i_{M}(m)})^T
\]

with

\[
i_b(m) = 1 + \sum_{s=1}^{m} 2^S - \left\{ (b + s - 1) - \left\lceil \frac{b + s - 1}{S + 1} \right\rceil S \right\}. \tag{22}
\]

For example, for \(S = B = 4\) and \(m = 2\), we have

\[
J_2 = (e_{i_3}^T e_{i_7}^T e_{i_4}^T e_{i_{10}}^T)^T F_G = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1
\end{pmatrix}
\]

2) Orthogonal-Flickering Pattern Mapping Matrix (O-FPMM): One special case of G-FPMM is orthogonal-flickering pattern mapping matrix (O-FPMM) which is obtained by setting \(m = 1\) in (22). From Remarks 1 and 2 in [26], the O-FPMM can completely eliminate the intra-cluster interferences and reduce the inter-cluster interferences, resulting in energy saving of the system. However, the number of available time slots for each BS is reduced by \(S\), this may bring the increase of blocking rate.

The O-FPMM needs to satisfy the orthogonality among the BSs within a cluster and which is expressed as

\[
M_1 = (e_{i_1(1)}^T \cdots e_{i_k(1)}^T \cdots e_{i_{M}(1)})^T
\]

with

\[
i_b(1) = 1 + 2^{S-b}. \tag{25}
\]

For example, when \(S = B = 4\), we have the following FPM:

\[
J_1 = (e_{i_3}^T e_{i_7}^T e_{i_4}^T e_{i_{10}}^T)^T F_G = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

3) Non-Flickering Pattern Mapping Matrix (N-FPMM): Another special case of G-FPMM is non-flickering pattern mapping matrix (N-FPMM), i.e., there is no coordination among BSs. The N-FPMM \(M_B\) is obtained by setting \(m = S\) in (22) and we have \(i_b(S) = 1 + 2^S\). By setting \(S = B\), we have

\[
J_B = 1_B, \tag{27}
\]

where \(1_B\) denotes a \(B\)-by-\(B\) matrix whose all elements are ones. By solving the aforementioned optimization problem with \(J_B\), we have a similar solution to on-off scheduling in [2]. For N-FPMM, all the BSs are in TM for every time slot and each individual BS performs resource allocation independently. Since the scheduler tries to squeeze the user’s signal to a smaller time slot index, neighboring BSs transmit the signals in the same time slots with a high probability. Thus, the ICI can be severe as there is no coordination among BSs. In the worst case, all the BSs transmit the signals to their associated users simultaneously, i.e., in the same time slot(s).

IV. ADAPTIVE FLICKERING PATTERN SELECTION

The flickering pattern needs to adapt to the time-varying traffic demand. This can be realized by an adaptive MM selection algorithm among G-FPMM \(M_m\) with \(m \in \{1, \ldots, B\}\). We denote the set of available MMs by \(\mathcal{M} = \{M_1, \ldots, M_B\}\).

Two conditions need to be satisfied during MM selection:

\(\text{C1: No violation of network QoS (blocking rate) constraint.}\)

\(\text{C2: Network energy saving gain.}\)

The optimum selection requires the blocking rate and the energy consumption of all the available flickering patterns, which are not available. We therefore are motivated to propose an alternative approach which only requires the information available.

The MM selection and update are carried out periodically. It is reasonable to consider a control delay until the selected MM is reflected in the system. In this paper, the selection cycle and the control delay are assumed to be the same, which is denoted by \(\Delta t\) (transmission cycles). We denote the selected MM for transmission cycle \(t\) by \(M_{m(t)} \in \mathcal{M}\), which will be used during transmission cycle \([t + \Delta t, t + 2\Delta t)\). We call \(m(t)\) the MM index (MMI). The current traffic load \(p_b(t, m(t), s)\) and blocking rate \(P_{blk}(t, m(t))\) are available for MM selection. In the following, without loss of generality, we consider the update during transmission cycle \(t\).

\(^3\)We have included \(t\) as a variable so as to indicate the different MM at each cycle.
A. Approximation of Traffic Load for MM Selection

Let us define the average traffic load of the cluster with $M_{m(t)}$ as

$$\bar{\rho}(t, m(t)) \triangleq \frac{1}{Bm(t)} \sum_{b \in B} \sum_{s=1}^{S} \rho_b(t, m(t), s),$$

(28)

where $\rho_b(t, m(t), s)$ is obtained by solving (18). Although the traffic demand such as the number of users and QoS requirement exhibits a time-varying nature, high correlation is expected within short time interval, i.e., $\bar{\rho}_b(t+\Delta t, m(t)) \approx \bar{\rho}_b(t, m(t))$ if the same $M_{m(t)}$ is used.

To enable the MM selection, we need to predict the traffic load with different MM other than $M_{m(t)}$ as

$$\hat{\rho}(t+\Delta t, m(t)-1) \approx \bar{\rho}(t, m(t)-1) = f(\bar{\rho}(t, m(t))),$$

(29)

where $f(.)$ is a function. To find the optimum $f(.)$ is quite difficult if it is not impossible. Fig. 3 shows the probability density function (pdf) of $\bar{\rho} \triangleq \bar{\rho}(t, m(t)-1)$. With $B = 4$ when target rate of each user is randomly selected from target rate set $\mathcal{R} = \{0.1, 0.2, \cdots, 1.0\}$ Mbps. From the figure, it can be seen that $\bar{\rho}$ concentrates at certain value for different $m(t)$. This observation motivates us to estimate $\bar{\rho}(t, m(t)-1)$ from actual traffic load $\bar{\rho}(t, m(t))$ by the following simple yet effective function:

$$\hat{\rho}(t+\Delta t, m(t)-1) \approx \mu(t)\bar{\rho}(t, m(t)),$$

(30)

where $\mu(t)$ is the multiplication factor. C1 will be satisfied if

$$\hat{\rho}(t+\Delta t, m(t)-1) \leq 1.$$

(31)

Then the total energy consumption of the cluster with $M_{m(t)-1}$ is estimated as

$$E_{c}(t+\Delta t, m(t)-1) = t_{bl}B((m(t)-1)P(\hat{\rho}(t+\Delta t, m(t)-1) + (S - (m(t)-1))P_{NM}).$$

(32)

C2 is considered to be satisfied if

$$E_{c}(t+\Delta t, m(t)-1) < E_c(t, m(t)).$$

(33)

B. Adaptation of MM

Fig. 4 summaries the overall procedure of the proposed RB allocation and MM selection algorithm. Every Δt transmission cycles, $m(t)$ and $\mu(t)$ are updated. The decision made at transmission cycle t is reflected on the operation for transmission cycle $[t+\Delta t, t+2\Delta t]$. There are three transition cases of the MMI as shown in Fig. 5:

- $T_{m(t)}^0 : m(t+\Delta t) = m(t),$
- $T_{m(t)}^+ : m(t+\Delta t) = \min\{m(t)+1, B\},$ and
- $T_{m(t)}^- : m(t+\Delta t) = \max\{m(t)-1, 1\},$

where $\min\{a, b\}$ and $\max\{a, b\}$ return the minimum and the maximum of a and b, respectively. If $P_{blk}(t, m(t)) > P_{th}$, we then need to change the MMI in order to support the current traffic demand. The violation of C1 is mainly due to the reduced number of TM time slots. Hence, we update the MMI as $m(t+\Delta t) = \min\{m(t)+1, B\}$ by the transition $T_{m(t)}^+$. On the other hand, if $P_{blk}(t, m(t)) \leq P_{th}$, the current traffic demand can be supported by $M_{m(t)}$. $\hat{\rho}(t+\Delta t, m(t)-1)$ is used to check if we can achieve energy saving without the violation of C1 and C2 by the transition $T_{m(t)}^-$. However, as $\hat{\rho}(t+\Delta t, m(t)-1)$ is the estimate of $\bar{\rho}(t+\Delta t, m(t)-1)$, incorrect decisions may be made as follows:

- False alarm (FA): Transition $T_{m(t)}^-$ is triggered, but either C1 or C2 is not satisfied.
Fig. 5. State transition among available MM.

- Miss detection (MD): Transition $T^0_{m(t)}$ is triggered, but $C1$ and $C2$ are satisfied. FA happens if the estimated traffic load is lower than the actual value, while MD happens if the estimated traffic load is higher than the actual one.

Correspondingly, if $\mu(t)$, which is used to estimate the traffic load, is smaller than the actual value, the traffic load is underestimated and FA is incurred; if $\mu(t)$ is greater than the actual value, the traffic load is overestimated and this results in MD. Therefore, a fixed $\mu(t)$ is not appropriate. These observations motivate us to adaptively adjust $\mu(t)$ based on the time-varying traffic demand as follows. To adjust $\mu(t)$, we introduce counter θ and its threshold Θ. θ is incremented if $C1$ is violated since the last update and is set to zero if $C1$ is violated.

By setting the threshold value θ higher, the algorithm becomes more conservative, i.e., it places more importance on the QoS degradation than energy saving. On the other hand, if the threshold value Θ is smaller, the algorithm emphasizes energy saving, i.e., it becomes aggressive.

- If $C1$ is not violated for a period of time, i.e., $\theta = \Theta$, $\mu(t + \Delta t) = \mu(t) - \Delta \mu_{\text{down}}$, where $\Delta \mu_{\text{down}}$ is the predetermined step size. MD can be prevented.
- If $C1$ is violated, $\mu(t + \Delta t) = \mu(t) + \Delta \mu_{\text{up}}$, where $\Delta \mu_{\text{up}}$ is the predetermined step size. FA can be prevented.

As it is summarized in Table II, the MMI update is done as

$$m(t + \Delta t) = \begin{cases} \min\{m(t) + 1, B\} & \text{if } P_{\text{blk}}(t, m(t)) > P_{\text{th}}, \\ \max\{m(t) - 1, 1\} & \text{else if } (31) \text{ and } (33) \text{ are satisfied,} \\ m(t) & \text{otherwise.} \end{cases}$$ \hfill (34)

During the initialization step ($t = 0$), we set $\mu(t) = \mu_{\text{init}}$, $\theta = 0$, and $m(0) = B$.

During an execution step ($t \geq 0$), RBs are allocated to users by solving (18) with $M_{m(t)}$ and $P_{\text{blk}}(t, m(t))$ is calculated and stored for next update. At every Δt transmission cycles, the following updates are carried out.

- If $P_{\text{blk}}(t, m(t)) > P_{\text{th}}$ for $t \in [t - \Delta t + 1, t]$, $C1$ is violated since the last update. Thus, the number of available time slots is increased by the transition $T^1_{m(t)}$. To prevent FA, $\mu(t + \Delta t) = \mu(t) + \Delta \mu_{\text{up}}$ and θ is reset to zero.
- If $P_{\text{blk}}(t, m(t)) \leq P_{\text{th}}$ for $t \in [t - \Delta t + 1, t]$, $\hat{\rho}(t + \Delta t, m(t))$ and $E_c(t + \Delta t, m(t) - 1)$ are estimated by (30) and (32) based on $P(t, m(t))$, respectively, and $\theta = \theta + 1$. If and only if $\hat{\rho}(t + \Delta t, \max\{m(t) - 1, 1\}) \leq 1$ and $E_c(t + \Delta t, m(t) - 1) < E_c(t, m(t))$, we set $m(t + \Delta t) = m(t) - 1$. Otherwise $m(t + \Delta) = m(t)$. If $\theta = \Theta$, $\mu(t + \Delta t) = \mu(t) - \Delta \mu_{\text{down}}$ and reset the counter as $\theta = 0$. Otherwise, $\mu(t + \Delta t) = \mu(t)$. Note that θ only affects the decrease of $\mu(t)$.

Fig. 6 illustrates an example of operation of the proposed MM selection algorithm with $\Delta t = 4$ and $\Theta = 3$. In this example, $m(t)$ is decreased every $\Delta t = 4$ cycles by the transition $T^1_{m(t)}$ because $C1$ is satisfied and $C1$ and $C2$ would be satisfied based on the estimates, $\mu(t)$ is decreased by $\Delta \mu_{\text{down}}$ at cycles 12 and 24 as $\theta = \Theta$. The transition $T^1_{m(t)}$ is triggered during cycle 28 due to the violation of $C1$. To avoid FA, $\mu(t)$ is increased by $\Delta \mu_{\text{up}}$ and $\theta = 0$. In the update during cycle 32, only $C1$ is satisfied. Thus, the transition $T^1_{m(t)}$ is triggered. During the update in cycle 36, the transition $T^2_{m(t)}$ is triggered due to the violation of $C1$ since last update, i.e., at cycle 33.

C. Implementation

To implement the adaptive CoNap in a practical system, the system requirements such as a control delay should be taken into account. Since the flickering pattern of CoNap is flexible, an arbitrary flickering pattern other than G-FPMM is possible to satisfy the system requirement. Furthermore, there is no need to explicitly inform the users the flickering pattern of each BS. The current status of the flickering pattern of each BS can be implicitly informed to the users. Since the mobile station (MS) needs to monitor the control channel in the current cellular system, the MS can detect when each BS is in TM or NM by detecting the presence of the control signal. Thus, no additional signaling is necessary.

The MM selection is performed every Δt cycles (selection cycle). The MM selection cycle is system dependent. If the time-varying traffic demand needs to be tracked closely, the selection cycle may be reduced to, e.g., less than several seconds. The centralized approach is most promising for MM selection. In practical systems, each BS is connected to an entity which controls the network. This entity may take the role of a central unit (CU) to perform MM selection based on the information provided by the BSs within a cluster. In such a case, the current blocking rate and the current traffic load information need to be sent from each BS to CU for MM selection. MMI is then fed back to each BS. This
information is significantly small compared to the user data or CSI which is required for other coordination approaches. As for the complexity, any scheduling algorithm can be adopted in the proposed adaptive CoNap. This means that the additional complexity incurred by the application of the proposed scheme is solely due to the MM selection. However, the selection algorithm itself can be implemented with low complexity.

V. SIMULATION RESULTS

In this section, the energy consumption and the blocking rate of the adaptive proposed CoNap are evaluated. The simulation parameters are summarized in Table III. A simple admission control is considered in the evaluation. At each transmission period t, a user set is generated according to the predetermined number of users within a cluster. The users are uniformly and randomly distributed within a cluster. Association of each user with BS and RB allocation are performed by the algorithm developed in Section III. A with N-FPMM, i.e., $m = B$. If $P_{\text{th}}(t, B) > 0.1$, a new user set is generated within the cluster. The procedure is repeated until $P_{\text{th}}(t, B) \leq 0.1$. Each user is equipped with two receive antennas. The simulated network consists of 28 cells. The cluster size is set to $B = 4$ as it compromises the energy saving gain and the increase of blocking rate [26]. Thus, there are seven clusters. The performance is evaluated in the central cluster and the interferences from surrounding first tier clusters are taken into account. The distance between neighboring BSs is set to 500m. We consider a distance dependent path loss at the carrier frequency of 2GHz and it is modeled as $L_{u,b} = 128.1 + 37.6 \log_{10}(d_{u,b})$ where $d_{u,b}$ is the distance between user u and BS b in km and a log-normally distributed shadowing with the standard deviation of $\sigma = 8$dB [28]. Antenna gain $A(\psi_{u,b})$ is calculated as $A(\psi_{u,b}) = \min\left\{ 12 \left(\frac{\psi_{\text{etilt}}}{\Delta\psi_{\text{etilt}}} \right)^{2}, A_u \right\}$, where $\psi_{u,b}$ is the relative elevation angle of the user u from the main-beam direction of the antenna of BS b, ψ_{etilt} is the half power beamwidth (HPBW), ψ_{etilt} is the electrical antenna downtilt, and A_u is the sidelobe floor [28]. The height of BS antenna and user is set to 32m and 1.5m, respectively [28]. The target rate of users R_{tar}^u is randomly selected from the target rate set $R_{\text{tar}} = \{0.1, 0.2, \ldots, 1.0\}$Mbps. One transmission cycle T_{cycle} is set to 1sec. Each value of the power consumption in (15) is given as $P_{\text{th}} = 10.8$Watt, $P_{\text{dyn}} = 14.8$Watt, and $P_{\text{loss}} = 1.257$ [2]. For adaptive selection algorithm, the initial value and the step sizes of $\mu(t)$ are set to $\mu_{\text{init}} = 0.5$, $\Delta \mu_{\text{up}} = 0.5$, and $\Delta \mu_{\text{down}} = 0.1$.

TABLE II

<table>
<thead>
<tr>
<th>MMI during cycle t</th>
<th>cycle t (actual)</th>
<th>cycle $t + \Delta t$ (estimated)</th>
<th>Transition Δt</th>
<th>MMI during cycle $t + \Delta t + 2\Delta t$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m(t)$</td>
<td>C_1</td>
<td>C_1</td>
<td>C_2</td>
<td>Tr$_{m(t)}$</td>
</tr>
<tr>
<td></td>
<td>\times</td>
<td>$-$</td>
<td>$-$</td>
<td>$\min{m(t) + 1, B}$</td>
</tr>
<tr>
<td></td>
<td>\circ</td>
<td>\circ</td>
<td>\circ</td>
<td>$\max{m(t) - 1, 1}$</td>
</tr>
<tr>
<td></td>
<td>\circ</td>
<td>\circ</td>
<td>\times</td>
<td>\circ</td>
</tr>
<tr>
<td></td>
<td>\circ</td>
<td>\circ</td>
<td>\circ</td>
<td>$m(t)$</td>
</tr>
</tbody>
</table>

TABLE III

<table>
<thead>
<tr>
<th>System Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell layout</td>
<td></td>
</tr>
<tr>
<td>Inter-BS distance</td>
<td>r_{tilt}</td>
</tr>
<tr>
<td>Total bandwidth</td>
<td>W_{total}</td>
</tr>
<tr>
<td>Number of frequency domain RBs</td>
<td>N</td>
</tr>
<tr>
<td>Transmission cycle</td>
<td>T_{cycle}</td>
</tr>
<tr>
<td>Maximum transmit power</td>
<td>P_{max}</td>
</tr>
<tr>
<td>Overhead of radiated power</td>
<td>P_{OBO}</td>
</tr>
<tr>
<td>OBO (\xi)</td>
<td>8 (dB)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Channel & Antenna Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shadowing standard deviation</td>
<td>σ</td>
</tr>
<tr>
<td>AWGN power density</td>
<td>σ_2</td>
</tr>
<tr>
<td>HPBW</td>
<td>ψ_{etilt}</td>
</tr>
<tr>
<td>Sidelobe floor</td>
<td>A_u</td>
</tr>
<tr>
<td>Electrical antenna downtilt</td>
<td>ψ_{etilt}</td>
</tr>
</tbody>
</table>

A. Impact of FPMMs Under Fixed Number of Users

We evaluate the impact of FPMM on the BS energy consumption. For comparison, the system with N-FPMM but without solving (18), which is denoted as “N-FPMM w/ random scheduling”, is considered. In this scheme, BS allocates the RBs to its corresponding users at randomly selected time slot. Note that solving (18) for N-FPMM is equivalent to “on-off scheduler” [2]. The flickering pattern of O-FPMM is equivalent to CS-O [15]. For fair performance comparison, we use the same RB allocation algorithm in Sect. III.A for CS-O. Fig. 7 shows that the CS-O provides the lowest energy consumption, followed by the G-FPMMs (\(m = 2\) and 3), due to the ICI reduction. By setting \(m = 2\) for G-FPMM, further energy saving is achieved compared to G-FPMM with \(m = 3\). This is because the BSs are in NM for larger number of time slots. However, as shown in Table IV, energy saving is obtained at the cost of the blocking rate increase, i.e., network QoS violation. The CS-O provides the significant energy saving without compromising network QoS when the number of users is large (corresponds to traffic demand). Similarly, the G-FPMMs can achieve the energy saving even when the number of users is large, i.e., \(|U|/B| = 30\).

B. Time-Varying Traffic Demand

The performance of the proposed adaptive CoNap under the time-varying traffic demand is evaluated. The time-varying traffic demand is characterized by the total number of users in the cluster, where the number of users is assumed to be same for \(T\) consecutive transmission cycles. In this paper, we set \(T = 60\). Thus, the number of users within a cluster is fixed during 1min but their QoS requirement, location, and channel
condition are independently generated during each simulation run of 1 sec. The number of users per cluster during cycle $t \in [t' T, (t' + 1) T)$ is calculated as

$$|U(t')| = B \left[U_{\text{mean}} + U_{\text{var}} \cos \left(\frac{2 \pi t' + t_{\text{offset}}}{1440} \right) + 2 v \right],$$

for $1 \leq t' \leq 1440,$

(35)

where U_{mean} and U_{var} are the average number and the variance of users per cluster, respectively, and $v \sim N(0, 1)$ is a Gaussian random variable. In Fig. 8, we set $U_{\text{mean}} = 20$, $U_{\text{var}} = 15$, and $t_{\text{offset}} = 600$.

For MM selection, two MM sets are considered: $\mathcal{M}_1 = \{\mathcal{M}_1, \mathcal{M}_4\}$ and $\mathcal{M}_2 = \{\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3, \mathcal{M}_4\}$. We set $\Delta t = 10$ and $\Theta = 60$. The BS energy consumption is shown in Fig. 9. For comparison, the BS energy consumptions of on-off scheduler [2] and CS-O [15] are also included in the figure. The on-off scheduler provides slight energy saving gain while CS-O provides significant energy saving gain due to the small power consumption during NM and the IC reduction. However, the energy saving of CS-O is at the sacrifice of QoS as it will be shown later in Fig. 11. During the low traffic demand condition, the adaptive CoNap with different MM sets provides the same energy consumption as CS-O. This is because the O-FPMM is always selected, i.e., $m(t) = 1$. During relatively high traffic demand condition, however, the choice of MM set results in different energy consumptions. This can be explained as follows. As the traffic demand increases, the network QoS requirement cannot be supported by O-FPMM as shown in Table IV. Thus the algorithm tries to use the other MMs. However, the remaining MM in the set \mathcal{M}_1 is the N-FPMM, whereas there are other G-FPMMs in the set \mathcal{M}_2. Therefore the set \mathcal{M}_2 can achieve further energy saving gain during high traffic demand condition.

Fig. 10 shows the accumulated BS energy consumption for one day. We set $\Delta = 10$ and $\Theta \in \{10, 60\}$. For comparison, the adaptive CoNap with ideal MM selection (denoted by “Ideal CoNap”) is considered. We consider two criteria for ideal CoNap; conservative and aggressive. For the conservative criterion, the MM which provides the lowest blocking rate is selected. Whereas, for the aggressive criterion, the MM which provides the minimum energy consumption without violation of C1 is selected. The figure shows that the proposed adaptive algorithm with $\Theta = 60$ becomes more conservative than that with $\Theta = 10$. By setting $\Theta = 10$, it becomes more aggressive and provides the energy consumption close to ideal CoNap with aggressive criterion. The adaptive CoNap can save up to 40% energy compared to the conventional system (on-off scheduler) after 24 hours.

The proposed adaptive CoNap reduces the number of available time slot for each BS. Therefore user QoS, i.e., target rate, may not be satisfied, however, several RBs may be allocated to users through RB allocation. Let us define the variable $\epsilon_u \triangleq \frac{R_u}{R_{\text{tar}}}$, which is the total rate the user obtained divided by its target rate. If $\epsilon_u < 1$, the user is considered to be blocked. Otherwise, the target rate of user u is satisfied. Fig. 11 shows the cumulative distribution function (CDF) of ϵ_u. Since ϵ_u is the same for “N-FPMM w/ random scheduling” and “on-off scheduler” [2], only one line is shown in the figure. For the proposed adaptive CoNap, by increasing θ, the algorithm becomes conservative to emphasize more QoS guarantee than energy saving, hence the probability of user QoS being satisfied increases by increasing Θ as the algorithm becomes conservative, i.e., it gives higher importance to QoS guarantee than energy saving. More than 99.5% of the users can satisfy their target rate by setting $\Theta = 10$ (60). Although significant energy saving is obtained by CS-O [15], only about 96.9% of users satisfy their QoS. On the other hand, the on-off scheduler [2] guarantees about 99.9% QoS requirement. Thus, we can conclude that the proposed adaptive CoNap with MM selection method well balances the energy saving with the QoS guarantee.

TABLE IV

| $|U|/B$ | on-off scheduler | CS-O | w/ CoNap |
|---|---|---|---|
| 10 | 0 | 0 | 0 |
| 20 | 0 | 5·10^{-6} | 1·10^{-5} |
| 30 | 1.25·10^{-4} | 9.24·10^{-3} | 5.85·10^{-4} |

Fig. 8. Time varying traffic demand.
VI. CONCLUSION

We have proposed an adaptive coordinated napping (CoNap) to save the energy consumption of wireless communication system. By forming a cluster consisting of multiple BSs, the implicit coordination among BSs is realized by a binary general flickering pattern matrix (FPM) and a mapping matrix (MM). To track the time-varying traffic demand of the system and enable implicit multi-cell (BS) coordination, an adaptive MM selection algorithm is developed. The MM which achieves the energy gain while satisfying the QoS requirement is selected from the set of available MMs based on the traffic load. Through computer simulation, it is shown that the adaptive CoNap can significantly reduce the energy consumption, i.e., around 40% saving compared to the conventional system without napping under the time-varying traffic demand. The proposed adaptive CoNap does not require any explicit coordination among the BSs, any data sharing, and exchange of CSI; thus, the system complexity and backhaul network overhead can be also reduced.

APPENDIX

DERIVATION OF DOHERTY PAE (13a)

From [19, (10.18)], we have

\[\eta = \frac{\pi}{2} \left(\frac{v_{in}}{V_{max}} \right), \quad \text{for } 0 < \frac{v_{in}}{V_{max}} < \frac{1}{2}, \]
(36)

where \(v_{in} \) is the input voltage and \(V_{max} \) is the maximum (peak) input voltage to PA. Since \(V = \sqrt{PR_{opt}} \) with \(R_{opt} \) being the resistor of the PA, we have

\[\begin{align*}
\frac{v_{in}}{V_{max}} &= \sqrt{\frac{P_{RF}(\rho_b(m,s))}{R_{opt}}} \\
V_{max} &= \sqrt{\frac{\xi P_{max}}{R_{opt}}} \phi_e^{-1}.
\end{align*} \]
(37)

By substituting (37) into (36), we have

\[\eta = \frac{\pi}{2} \sqrt{cP_{RF}(\rho_b(m,s))}, \quad \text{for } 0 < cP_{RF}(\rho_b(m,s)) < \frac{1}{4}, \]
(38)

(13b) can be derived in the similar way.

REFERENCES

Dr. Adachi served as General Co-chair of the Tenth IEEE Vehicular Technology Society Asia Pacific Wireless Communications Symposium (AP-WCS) and Track Co-chair of Transmission Technologies and Communication Theory of the 78th IEEE Vehicular Technology Conference in 2013. He was recognized as the Exemplary Reviewer from IEEE COMMUNICATIONS LETTERS and IEEE WIRELESS COMMUNICATIONS LETTERS in 2012.

Bong Hui Tan (M’95) received the B.Eng. in the electrical and electronic engineering from National University of Singapore, Singapore and the Ph.D. degree from Chalmers University of Technology in 1999 and 2005, respectively. Now he is a Research Fellow at Institute for Infocomm Research. His areas of research are coding in relay network, scheduling, multiuser detection and iterative decoding.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.