Brain-computer Interface for Neuro-Rehabilitation of upper limb after Stroke

Kai Keng Ang, Senior Member, IEEE, Cuntai Guan, Senior Member, IEEE

Abstract—Current rehabilitation therapies for stroke rely on Physical Practice (PP) by the patients. Motor Imagery (MI), the imagination of movements without physical action, presents an alternate neuro-rehabilitation for stroke patients without relying on residue movements. However, MI is an endogenous mental process that is not physically observable. Recently, advances in Brain-Computer Interface (BCI) technology have enabled the objective detection of MI that spearheaded this alternate neuro-rehabilitation for stroke. In this review, we present 2 strategies of using BCI for neuro-rehabilitation after stroke: detecting MI to trigger a feedback, and detecting MI with a robot to provide concomitant MI and PP. We also present 3 randomized control trials (RCTs) that employed these 2 strategies for upper limb rehabilitation. A total of 125 chronic stroke patients were screened over 6 years. The BCI screening revealed that 103 (82%) patients can use EEG-based BCI, and 75 (60%) performed well with accuracies above 70%. A total of 67 patients were recruited to complete one of the 3 RCTs ranging from 2 to 6 weeks of which 26 patients, who underwent BCI neuro-rehabilitation that employed these 2 strategies, had significant motor improvement of 4.5 measured by Fugl-Meyer Motor Assessment of the upper extremity. Hence the results demonstrate clinical efficacy of using BCI as an alternate neuro-rehabilitation for stroke.

Index Terms—motor imagery, brain-computer interface, stroke rehabilitation, robotic.

I. INTRODUCTION

STROKE is ranked as the third most common cause of disability worldwide, and the global burden of stroke is increasing [1]. Stroke survivors can partially recover their lost motor function from rehabilitation that involved repetitive and task-specific Physical Practice (PP) [2]. Since it is difficult or impossible for some stroke survivors to move the stroke-impaired limb during rehabilitation, Motor Imagery (MI), which is the mental process of imagination of movements without PP, represents an alternate rehabilitation approach [3], [4]. The rationale of performing MI arises from the neural correlation it shared with PP [5]. The main advantage of MI in rehabilitation is that stroke survivors who have difficulty in performing PP can still perform MI. However, while PP is observable, MI is an endogenous mental process. Hence it is impossible to check the compliance of performing MI by stroke patients from simple observation during rehabilitation. As such, MI is delivered in rehabilitation by a large variety of manners, such as the use of audiotapes or one-to-one guidance by a therapist [6].

Recent advances in analysis of brain signals and improvements in computing capabilities have enabled people with motor disabilities to use their brain signals for communication and control without using their impaired neuromuscular system [7]. This technology called Brain-Computer Interface (BCI) is useful in helping people who have suffered nervous system injury by providing them with an alternative means of communication, mobility and rehabilitation [8], [9]. It was found that neurophysiological phenomena called Event-Related Desynchronization or Synchronization (ERD/ERS) [10] are detectable from Electroencephalogram (EEG) in a majority of stroke patients while performing MI [11]. Thus EEG-based BCI can be used to objectively assess the performance of MI. In this way, stroke patients who suffer from severe limb weakness but are still able to imagine movements of the paretic hand can use BCI to trigger a contingent feedback upon detection of MI-related brain signals [12-14]. By re-establishing contingency between cortical activity related to MI and feedback, the use of BCI might strengthen the sensorimotor loop and foster neuroplasticity that facilitates motor recovery [15], [16]. Hence the use of BCI facilitates the alternate MI approach for neuro-rehabilitation in stroke.

There were numerous clinical studies that reported the use of BCI for stroke rehabilitation [17], [18]. The following reviews studies that reported clinical efficacy:

- Buch, et al. [12] first used a Magnetoencephalography (MEG)-based BCI to detect mu rhythm (9–12 Hz) to provide visual feedback in which a screen cursor was raised or lowered towards the direction of a target displayed on the screen. Once MI was detected, an orthosis attached to the stroke-impaired hand was triggered to provide a sensorimotor feedback. The results showed that 6 out of 8 patients could achieve BCI control, but no significant motor improvements were found.

- Mihara, et al. [19] studied 10 patients who received Near-Infrared Spectroscopy (NIRS)-based BCI with visual feedback versus 10 other patients who received NIRS-based BCI with irrelevant feedback. The results showed that the former group yielded averaged motor improvements of 5.0 measured by Fugl-Meyer Motor Assessment (FMMA) [20] compared to 2.3 in the latter group. Both groups yielded statistically significant motor improvements, but the former group yielded significantly greater improvements in the hand/finger subscale measured by FMMA compared to the...
latter group.

- Ramos-Murguialday, et al. [13] performed a Randomized Control Trial (RCT) on 16 patients who used EEG-based BCI to detect motor intention with hand and arm orthoses feedback versus 14 other patients who used EEG-based BCI with random orthoses feedback. Both groups received physiotherapy. The results showed that the former group yielded averaged motor improvements of 3.4 measured by combined hand and modified arm FMMA compared to 0.4 in the latter group. The results also showed that the former group yielded statistically significant motor improvements, but not the latter group.

- Rayegani, et al. [21] studied 10 patients who received Occupational Therapy (OT) with additional neurofeedback therapy (neurofeedback can be viewed as an operant conditioning concept of BCI operation [22]) for improving hand function versus 10 patients who received OT with additional biofeedback therapy and 10 patients who received only OT. In the study, neurofeedback involved the detection of motor imagery from sensorimotor rhythm (12–18 Hz), theta (4–8 Hz) and beta (13–30 Hz) bands of EEG to provide a visual feedback to the subject. The results showed that all 3 groups had similar motor improvements measured by Jebsen-Taylor Hand Function Test [23].

- Ono, et al. [24] studied 6 patients who received EEG-based BCI with simple visual feedback of the open and grasp animated picture of the hand versus 6 patients who received EEG-based BCI with somatosensory feedback using motor-driven orthosis to extend the fingers of the stroke-impaired hand. The results showed that 3 out of 6 patients in the latter group had motor improvements measured by Stroke Impairment Assessment Set [25], but none in the former group improved.

Although a systematic review had attested that adding to Physical Practice (PP) is an effective intervention for stroke [26], there is still scanty evidence in terms of clinical efficacy to indicate the benefits of MI compared to PP in stroke rehabilitation [27]. The studies of using BCI in [13], [21], [24] had demonstrated clinical improvements. However, two of the studies have added PP in the BCI intervention (physiotherapy in [13] and OT in [21]). One of the studies showed significant motor improvements of using BCI and PP compared to random feedback and PP [13], but the random feedback may decrease the motor improvements of the latter group. Furthermore, the other study [21] showed no significant motor improvements of BCI and PP compared to PP alone [21]. Hence there is still scanty details on how to integrate BCI as an neuro-rehabilitation intervention for stroke as well as scanty clinical evidence to indicate its effectiveness when compared to PP.

In this review, we present two strategies of applying BCI for neuro-rehabilitation after stroke. We then present the results of 3 RCTs we have conducted that utilized these strategies for upper limb stroke rehabilitation. Finally we present the motor improvements from all the patients enrolled in these 3 RCTs to investigate the clinical efficacy of BCI as an alternate neuro-rehabilitation for stroke.

II. STRATEGIES FOR BCI NEURO-REHABILITATION

Robotics has been used in stroke rehabilitation since the 1990s, and numerous robotic devices such as the InMotion Arm Robot (Interactive Motion Technologies Inc., USA, also known as MIT-Manus) and the Armeo Power (Hocoma, Switzerland) are now commercially available. In a recent systematic review on robotics for stroke rehabilitation, there is clear evidence that robotic interventions improve upper limb motor functions in stroke rehabilitation [28]. Moreover, a recent study by Klamroth-Marganska, et al. [29] performed a RCT on 38 patients who received robotic intervention versus conventional therapy. The results showed that the former group yielded averaged motor improvements of 3.4 measured by FMMA compared to 2.0 in the latter group. The results also showed that the former group yielded statistically significant motor improvements than the latter group, but it was noted that the absolute difference between the two groups was small and hence the clinical relevance was questionable.

There are several modes of human-robot interaction in robotic stroke rehabilitation, such as, active, passive, assistive, active-assistive, passive-mirrored, corrective, path guidance and resistive (the reader is referred to [28] for details). For example, in assistive mode, the robot provides assistance to the subjects in completing voluntary movement task. In passive mode, the robot performs the movement without any voluntary movement by the subject. Thus the basic strategy of robotic stroke rehabilitation is to provide PP on the stroke-impaired limb of the stroke patient, with or without voluntary movement, in the form of a sensorimotor feedback shown in Fig. 1.

![Fig. 1. Strategy of using a robot to provide intensive Physical Practice (PP) for stroke rehabilitation](image)

An example of a robot that provides PP for stroke rehabilitation is the MIT-Manus, which is a robot with 2 degrees of freedom that provides horizontal elbow and forearm reaching exercises using an 8-point clock face drawing interactive video game [30]. A small yellow circle on the screen indicates the current position of the robotic arm that holds the patient’s stroke-impaired arm, and a big red circle indicates a target position. During rehabilitation, the stroke-impaired upper limb of a subject is strapped to the MANUS robotic exoskeleton. The subject is required to move the stroke-impaired upper limb from the center towards the target on the screen and back along a pre-determined trajectory. If
the subject cannot perform the movement task, the MIT-Manus robot will provide assistance to move the subject’s upper limb towards the target. The MIT-Manus robot, which delivers an intensive PP training with sensorimotor feedback, had been shown to yield motor improvements in stroke patients that matched the motor improvements of patients who received intensive PP training delivered by therapists [31].

A. BCI triggered feedback

Fig. 2 shows a strategy of using BCI to detect MI to provide feedback for neuro-rehabilitation after stroke. This strategy was first employed by Buch, et al. [12] using a MEG-based BCI. Once MI was detected, an orthosis attached to the stroke-impaired hand was triggered to provide a sensorimotor feedback. This was also employed by Mihara, et al. [19] using a NIRS-based BCI to provide visual feedback, by Ramos-Murguialday, et al. [13] using an EEG-based BCI to provide sensorimotor feedback with an hand and arm orthoses. Ono, et al. [24] also employed this strategy to study the efficacy of EEG-based BCI to provide simple visual feedback versus somatosensory feedback using a motor-driven orthosis.

---

Fig. 2. Strategy of using Brain-Computer Interface (BCI) to detect Motor Imagery (MI) to trigger a feedback for neuro-rehabilitation in stroke

Fig. 3. Strategy of using Brain-Computer Interface (BCI) to detect Motor Imagery (MI) with a robot to provide concomitant MI and Physical Practice (PP) for neuro-rehabilitation in stroke

An advantage in the strategy of using BCI to provide feedback shown in Fig. 2 is that any form of feedback can be deployed. However, the result from a large RCT of 121 stroke patients had demonstrated that there was no significant difference between patients who performed MI, without using BCI, compared to patients who received standard arm therapy in early post-stroke. This raised an important issue on the clinical benefit of MI in stroke rehabilitation [27]. In addition, it was further pointed out that integrating MI in rehabilitation had yielded inconclusive clinical outcome [6], [27], [32].

B. Concomitant BCI and PP

Practically, stroke survivors who have residue movements, or recovered some motor abilities from stroke rehabilitation will have little difficulty in performing PP. Furthermore, systematic review of 15 studies in the literature from 1985 to 2009 had shown that MI is effective for upper-limb
rehabilitation after stroke only when added to PP [26]. Hence another strategy of using BCI for neuro-rehabilitation after stroke is by integrating BCI with a robot to provide concomitant MI and PP shown in Fig. 3. In this strategy, once MI is detected using the BCI, a feedback is provided to cue the stroke patient to perform voluntary movement while the stroke-impaired limb is strapped to a robotic end-effector. In this way, if the subject has difficulty in performing the voluntary movement task, the robot can provide assistance in the form of a sensorimotor feedback as shown in Fig. 1.

The main advantage of using the BCI-triggered feedback strategy in Fig. 2 compared to PP in Fig. 1 is that it facilitates the rehabilitation of stroke patients without residual motor function. Nevertheless, the best way to improve motor function is to have more physical practice [33]. This underlying principle of more practice is better can be readily observed from the years it takes for a child to reach and grasp like an adult [34]. Thus, once a stroke patient recovered some motor function, PP is still required to recover further. In contrast, the Concomitant BCI and PP strategy in Fig. 3 combines MI with PP to facilitate the rehabilitation of a larger population of stroke, with or without residue function. Hence, a plegic stroke patient who recovered some motor function using this strategy can perform PP to improve further.

III. RANDOMIZED CONTROL TRIALS

We had conducted 3 RCTs that employed two strategy of using BCI for stroke rehabilitation shown in Figs. 2 and 3 over 6 years from 1 April 2007 to 31 June 2013. This section provides a description on the 3 RCTs.

A. EEG Signal Recording

In all the 3 RCTs, EEG measurements from 27 channels were collected using the NuAmps EEG acquisition hardware (http://www.neuroscan.com) with unipolar Ag/AgCl electrodes channels, digitally sampled at 250 Hz with a resolution of 22 bits for voltage ranges of ±130 mV. EEG recordings from all channels were bandpass filtered from 0.05 to 40 Hz by the acquisition hardware.

B. Detecting MI using EEG-based BCI

The main challenge in detecting MI using EEG-based BCI is the huge inter-subject variability in the EEG with respect to the brain signal characteristics [35]. Hence in all the 3 RCTs, we employed the Filter Bank Common Spatial Pattern (FBCSP) algorithm [36] to construct a patient-specific model from a calibration session in order to detect MI as shown in Figs. 2 and 3.

The FBCSP algorithm had been shown to be an effective algorithm in detecting MI from EEG in BCI Competition IV held in 2008 [37] (the reader is referred to [36] for details on the FBCSP algorithm). The algorithm comprises 4 progressive stages of EEG processing to compute the patient-specific model. The first stage employs a filter bank that decomposes the EEG into multiple frequency pass bands. The second stage performs spatial filtering using Common Spatial Pattern (CSP) [38]. Each pair of band-pass and spatial filter in the first and second stages computes the CSP features that are specific to the band-pass frequency. The third stage selects discriminative CSP features based on the subject’s task using the Mutual Information-based Best Individual Feature (MIBIF) algorithm [39]. The fourth stage employs a classifier to model and classify the selected CSP features.

C. 1st RCT on BCI with robotic feedback

We conducted the 1st RCT of using EEG-based BCI for neuro-rehabilitation after stroke over 2.5 years from 1 April 2007 to 30 October 2009 [11], [40]. As stroke patients suffer neurological damage to their brain, the portion of their brain that is responsible for generating ERD/ERS can be compromised. Thus we first sought to investigate the extent of detectable brain signals on a population of stroke patients.

We collected EEG data from 54 stroke patients of which 46 performed MI and 8 performed finger tapping. We analyzed the EEG collected using the FBCSP algorithm described in section III.B. Patients with classification accuracy > 58% (95% confidence estimate of the accuracy at chance level) were deemed to have passed BCI screening.

In addition, we sought to compare the efficacy of EEG-based BCI with robotic feedback using the strategy illustrated in Fig. 2 versus intensive robotic training using the commercially available MIT-Manus robot using the strategy illustrated in Fig. 1. The MIT Manus robot was chosen for its positive results in hemiplegic stroke [41]. In this RCT, we analyzed the motor improvements of 12 sessions of 1-hour BCI with robotic feedback compared to robotic upper limb stroke rehabilitation for 4 weeks. Clinical efficacy in terms of motor improvements was measured using upper extremity FMMA scores pre-intervention at week 0, mid-intervention at week 2, end-intervention at week 4 and follow-up at week 12.

D. 2nd RCT on BCI with robotic feedback

We conducted the 2nd RCT over 3 years from 1 January 2011 to 1 January 2014 [42]. As other existing studies had demonstrated motor improvements in stroke patients using transcranial Direct Current Stimulation (tDCS) [43], [44], we sought to investigate whether tDCS could facilitate the stroke patients’ ability to operate BCI with robotic feedback and subsequently the efficacy in post-stroke motor recovery. The
setup of BCI with robotic feedback in this trial employed the strategy in Fig. 2 that was similar to the 1st RCT.

In this RCT, we analyzed the motor improvements of 10 sessions of 20 minutes of tDCS compared to sham-tDCS prior to 1-hour BCI with robotic feedback using the MIT-Manus robot for upper limb stroke rehabilitation for 2 weeks. Clinical efficacy in terms of motor improvements was measured using upper extremity FMMA scores pre-intervention at week 0, end-intervention at week 2 and follow-up at week 4.

E. 3rd RCT on BCI with concomitant MI and PP

We conducted the 3rd RCT recently over 2.5 years from 1 January 2011 to 31 June 2013 [45]. We sought to investigate the clinical benefits of concomitant MI and PP using the strategy shown in Fig. 3 by using an EEG-based BCI coupled with a haptic knob (HK) robot [46], [47]. We investigated the hypothesis of whether that this strategy could facilitate the beneficial effects of therapist-assisted arm mobilization for stroke patients compared to robot-assisted PP shown in Fig. 1 and to Standard Arm Therapy (SAT).

In this RCT, we analyzed the motor improvements of 18 sessions of intervention over 6 weeks, 3 sessions per week, 90 minutes per session. The primary outcome measure was upper extremity FMMA scores measured pre-intervention at week 0, mid-intervention at week 3, end-intervention at week 6, and follow-up at weeks 12 and 24.

IV. RESULTS FROM CLINICAL TRIALS

A. 1st RCT on BCI with robotic feedback

The 1st RCT screened 54 chronic stroke patients, of whom 48 passed the BCI screening. Among those who passed the BCI screening, 38 had performed well with accuracies above 70%. Subsequently, 26 of those who passed BCI screening were recruited for randomization [40], and the remaining 22 declined further participation. A total of 11 patients were randomized to the BCI-Manus group that underwent EEG-based BCI with robotic feedback intervention. The remaining 15 patients were randomized to the Manus group that underwent MIT-Manus robotic intervention. The group size was not balanced because a simple randomization was performed. Twenty-five patients completed the study and follow-up with 1 drop out from the Manus group.

The results showed that the BCI-Manus and Manus groups improved with an average FMMA score of 4.5 and 6.3 end-intervention at week 4 respectively, measured relative to the baseline FMMA before intervention. Clinically important changes in the upper extremity FMMA were estimated in the range from 4.25 to 7.25 to have an effect on important functional tasks [48]. Hence there were statistically and clinically significant motor improvements in both groups, but these improvements were not clinically significant and no significant inter-group differences were found. The results also showed that the online BCI accuracies and laterality coefficients from the tDCS group were significantly higher than the sham group (the reader is referred to [49] for details on the results of the RCT).

The result of 9 stroke patients from the sham-tDCS group using the BCI-triggered feedback strategy illustrated in Fig. 2 is further analyzed in section IV.D. The result from 10 patients in the tDCS group is not included in the further analysis since the use of tDCS was a confounding factor that improved the online BCI accuracies of the patients in this group.

C. 3rd RCT on BCI with concomitant MI and PP

The 3rd RCT screened 34 chronic stroke patients, of whom 29 passed the BCI screening. Among those who passed the BCI screening, 19 had performed well with accuracies above 70%. Subsequently, 22 of those who passed BCI screening were recruited for randomization [45], and the remaining 7 who passed BCI screening declined further participation. A block randomization was performed with a block size of 3 to balance the group size. A total of 7 patients were randomized to the BCI-HK group that underwent EEG-based BCI and HK robot to perform concomitant MI and PP intervention using the strategy illustrated in Fig. 3. Another 8 patients were randomized to the SAT group that underwent repetitive task training [50] focusing on forearm pronation-supination movements incorporating wrist control and grasp-release of various objects. All 3 groups received 30 minutes of therapist-assisted arm mobilization following the principles of the professionally recognized Neuro-developmental Treatment Approach for stroke rehabilitation [51] for each session of intervention. Twenty-one patients completed the study and follow-up with 1 drop out from the BCI-HK group.

The results showed that the BCI-HK, HK and SAT groups improved with an average FMMA score of 7.2, 7.3 and 4.9
end-intervention at week 6 respectively, measured relative to the baseline FMMA before intervention. There were statistically and clinically significant motor improvements in all groups, but no significant inter-group differences were found. Significantly greater FMMA improvements were observed in the BCI-HK group compared to the SAT group mid-intervention at weeks 3 and post-intervention at weeks 6 and 12. However, no significant greater FMMA improvements were observed in the HK group compared to the SAT group (the reader is referred to [45] for details on the results of the RCT).

The result of 6 stroke patients from the BCI-HK group using the Concomitant BCI and PP strategy shown in Fig. 3 is further analyzed in section IV.D.

D. Results from all RCTs

The 3 RCTs that we had conducted performed EEG-based BCI screening for 54, 37 and 34 chronic stroke patients respectively. A total of 48, 26 and 29 patients passed the screening in the RCTs, and a total of 38, 18 and 19 had good performance with accuracies above 70% respectively. Hence a total of 125 stroke patients were screened, of whom 103 passed the BCI screening and 75 had good performance. The results thus show that 82% of the chronic stroke patients can use the EEG-based BCI system for neuro-rehabilitation, of which 60% of them had performed well with accuracies above 70%.

Fig. 4 shows the clinical outcome measured by FMMA score of the upper extremity on stroke patients recruited to receive EEG-based BCI stroke rehabilitation. The clinical outcomes were analyzed from all the 11 patients who completed the BCI-Manus intervention in the 1st RCT, all the 9 patients who completed the sham-tDCS intervention in the 2nd RCT, and all the 6 patients who completed the BCI-HK in the 3rd RCT. The clinical outcomes of all the 26 patients from these 3 RCTs were then combined to perform an overall analysis. Paired t-tests were performed on the FMMA scores improvements after the intervention that were relative to the baseline FMMA before intervention.

The results showed motor improvements of 4.55±6.07, 2.78±3.96, and 7.17±2.32 from the 3 clinical trials respectively. The results from 2 of the 3 clinical trials were both statistically and clinically significant. The combined results from all the 3 clinical trials showed a statistically significant improvement of 4.54±4.86 from 26 stroke patients.

V. CONCLUSIONS

In this article, we presented a strategy to use BCI to detect MI to trigger a feedback, and another strategy to use BCI to detect MI with a robot to provide concomitant MI and PP for neuro-rehabilitation after stroke. We described the 3 RCTs that we had conducted that employed these two strategies.

In the 3 RCTs, we performed BCI screening of a total of 125 chronic stroke patients over 6 years. In our studies, a patient passed the BCI screening if the accuracy of detecting MI using the FBCSP algorithm [37] was above the chance level. This process is more simple and objective compared to the use of subjective tools such as the Kinesthetic and Visual Imagery Questionnaire [52] to assess whether the patient is able to imagine vivid images of movement [6]. The results showed that a majority 82% of stroke patients could use EEG-based BCI for neuro-rehabilitation, and 60% had performed well with accuracies above 70%. The 18% BCI illiteracy in stroke patients who had BCI accuracy of less than 58% at chance level is close to our initial finding in [11], and falls within the estimated range of 15–30% commonly found in BCI laboratory [53]. As shown in the study by Ramos-Murgauiday, et al. [13], stroke patients who received BCI with hand and arm orthoses feedback had significant improvements, but not those who received random feedback. Since a BCI with random feedback is functionally similar to a BCI with an accuracy of about 50% at chance level, the results from the study showed that BCI accuracy had an effect on the improvements of the patients. Therefore, it is important to select patients who passed the BCI screening for stroke rehabilitation. However, it is noted that the passing accuracy at chance level may be too low for optimal detection of MI compared to the recommended accuracy of 70% for BCI in communication and control [54]. Nevertheless, in another study by Mihara, et al. [19], patients who received BCI with random feedback also had significant improvements. The significant improvements obtained despite the low BCI accuracy may be due to a higher level of engagement by the patient to perform motor imagery of the stroke-impaired upper limb for rehabilitation. Therefore, a high accuracy may not be a crucial factor in neuro-rehabilitation since the BCI is used to provide feedback and not as a communication and control system that require high degree of accuracy [55].

We also presented the motor improvements measured using FMMA scores of the upper extremity from the 3 RCTs. The 1st and 2nd RCTs employed the strategy of using EEG-based BCI to drive a robot to provide a sensorimotor feedback for neuro-rehabilitation in stroke. The patients in the 1st RCT had significant motor improvements measured by FMMA scores, but not the patients in 2nd RCT. This is due to the shorter intervention of 2 weeks in the 2nd RCT compared to 4 weeks in the 1st RCT. Hence the results showed that the length of intervention may affect the outcome of the studies. However,
the results of the 1st RCT showed motor improvements that were similar to the strategy of using a robot to provide PP without using EEG-based BCI to detect MI [40]. This result is consistent with the study in [27] that showed no significant difference between patients who performed MI without using BCI compared to patients who performed PP. Hence the results from the 1st and 2nd RCTs on using BCI with robotic feedback were not entirely promising.

The 3rd RCT employed the other strategy of using EEG-based BCI and a robot to provide concomitant MI and PP for neuro-rehabilitation in stroke. The patients in the 3rd RCT had significant motor improvements, and the averaged improvement across the patients was greater than the 1st RCT. This may be due to the longer 6 weeks of intervention compared to the 1st and 2nd RCTs. Nevertheless, these patients had motor improvements that were significantly better than patients who received PP from SAT, and patients who received PP using a robot were not significantly better than those who received PP from SAT [45]. Hence the results from the 3rd RCT on using BCI with a robot to provide concomitant MI and PP was more promising than using BCI with a robot to provide a sensorimotor feedback in the 1st and 2nd RCTs. Overall, 26 patients who received EEG-based BCI neuro-rehabilitation in the 3 RCTs had significant motor improvements. This overall result demonstrates the clinical effectiveness of the two strategies in using EEG-based BCI for neuro-rehabilitation in stroke.

From the results, the length of intervention appeared to be a confounding factor. Hence we recommend adopting an intervention of at least 6 weeks, 3 sessions per week, to observe significant improvements in the use of BCI for neuro-rehabilitation after stroke. Furthermore, the patients in the 3 RCTs who received EEG-based BCI neuro-rehabilitation either performed MI of left or right upper limb. On the other hand, four actions of MI can be detected using BCI, namely, left hand, right hand, foot and tongue [56]. Since MI of foot and tongue are detectable, BCI for neuro-rehabilitation can also be extended to lower limb [57] and dysphagia [58] respectively. Moreover, dry EEG electrodes had now been successfully used for visual-evoked potential BCI [59]. Although the use of dry EEG electrodes for MI BCI was found to be inferior to gel-based EEG electrodes [60], future development of dry EEG for MI BCI may help to reduce the setup time for neuro-rehabilitation. Last but not least, research to address the BCI inefficiencies of current algorithms [61] is crucial so that more patients will be able to use BCI for stroke rehabilitation.

ACKNOWLEDGMENTS

We acknowledge the following clinicians and therapists for conducting the 3 Randomized Control Trials: Dr Karen Sui Geok Chua, Dr Effie Chew, Dr Yee Sien Ng, Mr Christopher Wee Keong Kuh, Mr Gopal Joseph Ephraim Joseph and Ms Ling Zhao. We also acknowledge the following scientists and engineers who are involved in developing the EEG-based BCI system for neuro-rehabilitation after stroke: Dr Haihong Zhang, Dr Zhou Longjiang, Mr Kok Soon Phua, Mr Chuachu Wang, Mr Zheng Yang Chin and Ms Ka Yin Tang. Last but not least, we also like to thank Ms Li Hwa Lim for her constructive comments to improve this manuscript.

REFERENCES

Kai Keng Ang (M’05-SM’15) received the B.A.Sc degree (First Hons.), M.Phil. and Ph.D. degree in Computer Engineering from Nanyang Technological University, Singapore in 1997, 1999 and 2008, respectively. From 1999 to 2003, he was a senior software engineer with Delphi Automotive Systems Singapore Pte Ltd working on embedded software for automotive engine controllers. He is currently the Brain-Computer Interface Lab Head and a scientist at the Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore. He is also an Adjunct Assistant Professor in the School of Computer Engineering, Nanyang Technology University, Singapore. He was the recipient of the g.tec Annual BCI Research Award 2010 and IES Prestigious Engineering Achievement Award 2009. His research interests include brain-computer interface, computational intelligence, machine learning, pattern recognition and signal processing.

Cuntai Guan (SM’03) received the Ph.D. degree in electrical and electronic engineering from Southeast University in 1993. He is currently a Principal Scientist and Department Head at the Institute for Infocomm Research, Agency for Science, Technology and Research (A∗STAR), Singapore. His current research interests include neural and biomedical signal processing; neural and cognitive process and its clinical application; brain-computer interface algorithms, systems and its applications. He was the recipient of several awards including g.tec Annual BCI Research Award 2010, IES Prestigious Engineering Achievement Award 2009, etc. He has published over 160 refereed journal and conference papers and holds 13 granted patents and applications. He delivered over 30 keynote and invited talks. He serves in the editorial board of IEEE Access, IEEE Transactions on Biomedical Engineering, and Frontiers in Neuroprosthetics.